Nutritional and climate impacts of removing animals from US agriculture

If everyone in the United States converted to a 100% vegan diet, would U.S. agriculture still provide enough essential nutrients for the population? How would this dietary change impact the amount of land needed for agriculture? How significantly would this change impact agricultural greenhouse gas emissions?

Significance

US agriculture was modeled to determine impacts of removing farmed animals on food supply adequacy and greenhouse gas (GHG) emissions. The modeled system without animals increased total food production (23%), altered foods available for domestic consumption, and decreased agricultural US GHGs (28%), but only reduced total US GHG by 2.6 percentage units. Compared with systems with animals, diets formulated for the US population in the plants-only systems had greater excess of dietary energy and resulted in a greater number of deficiencies in essential nutrients. The results give insights into why decisions on modifications to agricultural systems must be made based on a description of direct and indirect effects of change and on a dietary, rather than an individual nutrient, basis.

ABSTRACT: As a major contributor to agricultural greenhouse gas (GHG) emissions, it has been suggested that reducing animal agriculture or consumption of animal-derived foods may reduce GHGs and enhance food security. Because the total removal of animals provides the extreme boundary to potential mitigation options and requires the fewest assumptions to model, the yearly nutritional and GHG impacts of eliminating animals from US agriculture were quantified. Animal-derived foods currently provide energy (24% of total), protein (48%), essential fatty acids (23–100%), and essential amino acids (34–67%) available for human consumption in the United States. The US livestock industry employs 1.6 × 106 people and accounts for $31.8 billion in exports. Livestock recycle more than 43.2 × 109 kg of human-inedible food and fiber processing byproducts, converting them into human-edible food, pet food, industrial products, and 4 × 109 kg of N fertilizer. Although modeled plants- only agriculture produced 23% more food, it met fewer of the US population’s requirements for essential nutrients. When nutritional adequacy was evaluated by using least-cost diets produced from foods available, more nutrient deficiencies, a greater excess of energy, and a need to consume a greater amount of food solids were encountered in plants-only diets. In the simulated system with no animals, estimated agricultural GHG decreased (28%), but did not fully counterbalance the animal contribution of GHG (49% in this model). This assessment suggests that removing animals from US agriculture would reduce agricultural GHG emissions, but would also create a food supply incapable of supporting the US population’s nutritional requirements.

Read the full study: White and Hall (2017) “Nutritional and greenhouse gas impacts of removing animals from US agriculture”